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Abstract—    We consider autonomously flying a miniature co-
axial helicopter in various indoor environments.  The architecture 
allows developers to write navigation algorithms for aerial robots 
without worrying about the underlying control features. Our work 
aims to provide a helicopter with a robust stabilization controller, 
and an obstacle detection and avoidance feature. We stabilize the 
helicopter using a combination of Optical Flow and Sonar Sensor 
data. Obstacle Avoidance allows us to detect and avoid obstacles 
using a support-vector machine on multiple segments of a live 
image streamed from the helicopter. We test the architecture using 
corridor-following and stair-following algorithms written as plug-
ins into the system. 
 

I. INTRODUCTION 
HE goal is to develop a controller for a helicopter to 
successfully execute directives from navigation 

routines. We also developed a learning algorithm to detect 
obstacles along corridors, and successfully avoid the 
obstacles. The input of the system is live image sequence 
captured by the camera mounted in front of an indoor 
helicopter. Stabilization should react to changes in the 
environment and keep the helicopter on-course. Obstacle 
detection should detect all the close range objects and 
suggests the best turning angles for the helicopter to avoid 
obstacles. 

II. INTRODUCTION 

 
The goal is to detect 

any obstacle along 
corridor with single 
onboard camera 
(Figure 1). We can 
make use of motion 
information such as 
optical flow to detect 
stationary obstacles in 

open environment or 
moving obstacles in 
confined environment.  
However it is very difficult to detect stationary objects in 
confined environment due to the fact those obstacles 
usually share same kind of motion information as the 
background. 
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III. RELATED WORKS 
  Lot of prior work has been done for stabilization, but they 
require bulky equipment and lot of processing power. Our 
problem required us to use minimal payload and no 
localization. Prior work in this field has been done where 
they use Optical flow to stabilize a similar helicopter [2].  
 
 For obstacle detection, lots of techniques have been 
explored in the past to detect moving obstacles with single 
camera. It can be done quite easily using optical flow 
because moving objects induce a unique motion vector 
compared to the surroundings. Researchers [2] used image 
stabilization to "freeze" the environment before detecting 
the areas which have a different motion as moving obstacle. 
Alternatively, they can simply perform some clustering 
method to separate different classes of motion generated by 
objects and background [3]. 
 
  Detecting stationary obstacle is more challenging. This 
can be simplified if we assume that the helicopter can see 
the ground plane. The work in [4] assumes the entire 
camera footprint is always on the ground. Any sparse 
optical flow than can't satisfy homography transformation is 
declared as an obstacle boundary. 
 
  There are also works that do not use optical flow at all [5]. 
They use image segmentation technique to detect big rocks 
on the ground, based on low level features like color and 
edges. However, these methods are limited to ground robots 
moving on planar surface. 
 
  Therefore we designed our obstacle detection algorithm 
based on image structure. Our hypothesis is that the image 
energy spectrum provides important information for depth 
estimation as was studied by [6] 
 

IV. HARDWARE PLATFORM 
  In this work, we test our algorithm on the Blade CX2 
Coaxial Micro Helicopter. The coaxial rotors limits the 
maneuverability of the helicopter, but it is more stable than 
the dual-rotor counterparts. The helicopter weighs 
approximately 200grams with the battery and has a payload 
capacity of about 70grams. Our algorithms run off-board on 
a laptop, and it gives control commands to the aerial 
platform using the Spectrum DX6i 2.4GHz transmitter. We 
use the Endurance PCTx interface as a link between the 
computer and the transmitter. 
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Figure 1. Obstacle are detected 
and marked in live scene 



  

  Our main sensor is a miniature KX141 camera; it is a 
795×596 resolution camera that weighs just under 13grams. 
The images are transmitted back to the computer in real-
time using a miniature 2.4GHz 10mW audio/video 
transmitter set. We sonar sensors (LV MaxSonar-EZ0) to 
detect height and distance to the walls. The sensor data is 
transmitted back using a XBee transmitter. Our robot 
platform is a co-axial hobby helicopter (the Blade CX2), 
fitted with custom sensors.  We have software and hardware 
to allow a computer to control the helicopter remotely 
without human interaction. This helicopter control is 
achieved through a “PCTx” system, giving the computer the 
exact same controls available to a human pilot. 
 

 
Figure 2: PCTx software setup. 

 

V. STABILIZATION 
  It is very important to be able to successfully stabilize the 
helicopter during flight. We achieve this using the 
following individual tools: 
 

A. Optical Flow: 
  Optical flow is used to correct for any drift and yaw in the 
helicopter.  If the helicopter jerks strongly due to 
environment induced instability, Optical flow will pick it 
up. We can then use a Proportionality control to compensate 
for the jerk and dampen the instability. A differential 
component to the controller ins not necessary since Optical 
Flow is itself a differential of the position of the object (we 
can alternatively view it as a PD controller of position). 
This can be summarized by the following equations: 
 

               *
ofx x                            *

of    
where ̇x* and θ̇* are the drift correction and yaw correction 
respectively. 
 

B. Wall Avoidance: 
  We have sonar sensors mounted on the side of the 
helicopter. The sonar sensors feed into a Wall Avoidance 
algorithm that centers the helicopter. It does so by creating 
an exponential decay from the walls. Therefore, the push 
away from the wall increases exponentially as the helicopter 
gets closer to it. This ensures that the walls don’t obstruct 
navigation when the helicopter is well positioned near the 
center of the corridor, while making sure the helicopter 
doesn’t hit the wall at the same time. 
 

C. Height: 
  To measure height, we have a vertical sonar sensor, aimed 
downwards on the bottom of the helicopter.  Using this 
measurement over time, we tune the throttle of the 
helicopter using a PID controller to stabilize its height at a 
desired value.  The PID controller can be described as: 
 
Throttle(t) = Trimthrottle  - [Kp * P(t) + Ki * I(t) + Kd * D(t)] 

 
Kp, Ki, Kd are coefficients for the Proportionality, 
Integrative, and Derivative parts, respectively.  
P(t), I(t), D(t) are Proportional, Integrative, and Derivative 
results on the measurements over time.  
Trimthrottle is the throttle required for the helicopter to hover. 
 
  The throttle needed to approach the desired height at the 
current time is now given by Throttle(t).  The PID controller 
uses the Proportional value (P(t)) to help correct based on 
the current height measurement at time t.  The Integrative 
value (I(t)) helps correct over time, so if the Trim is set 
incorrectly this calculation will make up for it.  Finally, the 
Derivative vale (D(t)) helps stabilize the system, dampening 
the correction values as the helicopter approaches the 
correct height. 
 

VI. OBSTACLE DETECTION AND AVOIDANCE 
 

We have developed a 
vision-based algorithm 
to detect obstacles from 
single image based on 
support vector machine 
(SVM). The algorithm 
successfully identifies 
obstacles in a corridor, 
and an appropriate 
control routine helps the 
helicopter avoid the 
onstacle. 

 

Figure 3. Each cell is 
manually labeled with 0 & 
1 to represent free space 
and obstacle respectively. 



  

A. Training 

  To train a SVM to understand what an obstacle is, we 
captured a training video of motion down a corridor. 
Some objects were placed along the path trajectory to 
represent obstacles as shown in Figure 3. A total of 560 
training images were collected. We sub-divided each 
image into 3x5 grid cells. Each cell, with dimension 
64x64 pixels, was manually labeled with 0 and 1 which 
represent free space and obstacle respectively as shown in 
Figure 1b. As was discovered by Torralba [7], the mean 
scene depth of an image can be represented by the global 
and local spectral signature extracted from the frequency 
domain of the image. Many applications have been 
developed to perform scene categorization [1, 8] and 
context-based object detection [9] by using this spectral 
signature as a global measure. However, to the best of our 
knowledge, we are the first group applying spectral 
signature to solve obstacle detection problem. 

 
Each cell is represented by a feature vector of 384 

elements which are the coefficients of the extracted 
spectral signature. We were attempted to add in more 
features that may also provide depth information such as 
edge orientation, color and time-to-collision. However 
extracting different classes of feature definitely increases 
the processing time during prediction and thus shorten the 
time available for the flight controller to react against 
obstacles. 

 
Therefore we took another approach which captures 

more contextual information by including feature vectors 
from the four nearest neighboring cells as was done in [8]. 
The extended feature vector contains information from a 
larger portion of the image, and thus is more expressive 
than just local cell. This makes the feature vector of 5 x 
384 = 1920 dimensional but only slightly increase the 
time for feature extraction.  In training phase, we used a 
binary SVM classifier with radial basis kernel function, 
while tuning the SVM parameters to maximize the recall 
score during the training stage. Low miss detection rate 
for obstacle received higher priority than false alarm. If 
the SVM misclassifies a floor image segment as obstacles, 
it poses lesser risk to the helicopter. 

 

B. Avoidance 
 
  Once the SVM detects an obstacle, we create a field 
around it to push the helicopter away from it. This is 
achieved by causing the helicopter to drift away from the 
obstacle, while continuing to point towards the goal 
(vanishing point in case of the corridor [1]). To make sure 
the helicopter doesn’t move away from obstacles into 
walls, the algorithm gives preference to paths closer to the 
center of the image, since walls are usually along the 
sides. Figure 5 shows obstacle detection output during 

actual flight test and the corresponding control command. 
Green cells indicate free space and red ones mark detected 
obstacles. 

VII. EXPERIMENTS 

A. Data 
 
To try out the reliability in using local spatial 

signature in obstacle detection, we have coded a prototype 
of the classifier in Matlab using the open source spatial 
signature extraction [10] and SVMLight [11]. The trained 
SVM have been tested against four different sets of test 
images captured by web camera. All obstacles were 
manually marked in each image. The accuracy is 
measured by (1) & (2) and summarized in Table 1. 

 100TPrecall
TP MI

 


 (1) 

 100TPprecision
TP FA

 


 (2) 

 
TP denotes true positive which is the total number of cells 
being labeled as obstacles. MI is the total number of cells 
being labeled as obstacles but misclassified as free space by 
our classifier. FA denotes false alarm which is number of 
cells being labeled as free space but misclassified as 
obstacles. 
 
Test 
Set 

Number of 
images 

Recall(%) Precision (%) 

1 380 94.65 94.56 
2 528 81.03 66.14 
3 1091 83.14 86.37 
4 662 73.30 75.31 

Table 1. Accuracy of obstacle detection with the test 
images 

B. Accuracy 
 
From Table 1, the SVM classifier achieves at least 

70% recall rate for all test sequences. It is very accurate 
for test set #1 as the obstacles are the same as the training 
data except being placed at different locations. The 
classifier still gives reasonable accuracy in detecting other 
obstacles with different class, size and orientation. 

 

 
(a) frame #77 

 
(b) frame #118 

Figure 4. Obstacle detection output 



  

 
Figure 4 shows some of the offline detection outputs when 
the camera approaches two obstacles in test set #2. Our 
SVM classifier marked the detected obstacles in red. 
 

C. Real-time experiments with helicopter 
 
In order to integrate the new obstacle detection with 

the existing helicopter platform, the classifier has been re-
coded in C++ using OpenCV and spatial envelop source 
code available at [7]. Unfortunately, the trained SVM 
model in Matlab is not compatible with C++.  Therefore 
we have coded the training functions in C++ as well. This 
implementation is quite different with the one used in the 
scene classifier of our previous work [12]. Instead of 
computing a spatial signature for entire frame, the new 
code has been optimized to extract 15 local spatial 
signatures per image and perform vectors concatenation 
from nearest neighbor grid cells. Despite of the new 
complexity, the classifier still can achieve 3 frame-per-
second detection rate. 

 
(a) Drift left  

 
(b) Stay at centre 

 
(c) Drift left 

 
(d) Stay at centre 

Figure 5. Obstacle detection recorded during flight test 
 

D. Real-time experiments of Stabilization 

  We tested the robustness of our stabilization by trying 
out 2 vision based algorithms on the helicopter. These 
algorithms [1] are meant to successfully detect corridors 
and stairs and provide a path towards the end of the 
corridor and stairs. We were able to successfully test these 
algorithms on our platform and our success rate has been 
documented in Table 2.  

  In addition to affirming the robustness of our 
stabilization routine, this experiment served to show how 
flexible our platform is. These 2 algorithms were 
integrated as direct plug-ins into the system. 

 
Table 2. Experimental performance in different settings. 
 

VIII. CONCLUSION AND FUTURE WORKS 
We have successfully implemented obstacle avoidance 

algorithm and integrated into the helicopter platform. 
Flight test results show that our system can detect and 
avoid obstacles along corridor in real-time. However more 
works are needed to improve the algorithm to handle 
different class of indoor environments. 
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